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Direct estimation of the partition function from computer simulation
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We propose an approximate method for directly estimating the partition function of classical, many-body
model systems. The accessible part of the phase space is determined from a single simulation. We introduce the
method for the hard-sphere fluid and solid. The best performance is found in the dense fluid regime, close to
freezing density and in the solid crystal. Defining hard-core effective diameters, the method can be applied to
systems with soft-core interactions. We present results of exploratory calculations for the Lennard-Jones liquid.

DOI: 10.1103/PhysRevE.65.026110 PACS number~s!: 05.10.2a, 05.20.Jj, 61.20.Ja
t
s

en
a
e
tw
ide
w
en
a
u
o

itie
to

s
he

te

h
e
s
u
ce

ly
d
e
a
e
-
tr
ur
is
r
s
th
e

e
fo

sent
art,

d by

ve
sur-
e for

be
the
the
the
2,
ich
3

of
est
le,
red

ble
I. INTRODUCTION

The most challenging task of computer simulations is
determine the partition function of many-body model sy
tems. The partition function or related thermodynamic pot
tial functions such as free energy or entropy are not ph
variables but functionals of the calculation. In general, th
accurate estimation requires simulation over, at least,
state points. One is the reference state, most often the
gas or the low-temperature harmonic crystal, with kno
thermodynamic potential functions. The entropy or free
ergy of the other state is determined by connecting it vi
reversible path to the reference state. A fairly recent acco
of most of the efficient methods can be found in the book
Frenkel and Smit@1#.

In special cases, it is possible to obtain these quant
from a single simulation. A direct and systematic way is
expand the entropy in terms of the correlation functions@2#.
Unfortunately, the method is applicable only to dilute sy
tems because it is practically impossible to calculate hig
than three-particle correlation functions@3#. Another possi-
bility is the so-called test particle method, which estima
the excess chemical potential. The technique is based on
derivation of Widom@4#. A severe limitation of this approac
is that its practical implementation involves a random ins
tion of an extra particle in the system. Clearly, for den
systems or for particles with a complicated shape, the s
cess rate of insertion attempts goes to zero and the ex
chemical potential becomes immeasurable@5,1#.

In the following, we present a method which is close
related to the ‘‘free-volume’’ idea of Hoover, Hoover, an
Hanson@6# introduced for hard disks. Using elementary g
ometry for a two-dimensional system of hard disks, it w
straightforward to determine the average volume availabl
a single particle analytically@6#. There are several other pa
pers in the literature applying related concepts of geome
measures to determine partition functions for different p
poses@7,8#. We want to show that the idea of free volume
in fact, only a special, hard-core version of a more gene
treatment which can be applied to soft-core model system
well. This makes the approach very attractive, despite
fact that being an approximation, its usage possesses a s
empirical character.

The organization of the paper is as follows. First, w
present the geometrical view of the free-volume concept
1063-651X/2002/65~2!/026110~4!/$20.00 65 0261
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hard spheres. Creating an easy-to-use algorithm, we pre
results for hard-sphere fluids and solids. In the second p
we adapt the method for a soft-core system represente
the Lennard-Jones liquid.

II. THE GEOMETRIC PICTURE

The idea is depicted in Fig. 1 in two dimension. We ha
hard spheres represented by white circles. Each circle is
rounded by a dark circle representing a space inaccessibl
the centers of other particles. Let the present configuration
a snapshot of an equilibrium arrangement. If we keep all
particles fixed, the volume accessible to particle 1 is
white area around this number because it is bordered by
exclusion circles of other particles. In the case of particle
in addition to the white area, there is also a dark area wh
is covered only by its own exclusion circle. The number
marks a ‘‘void,’’ an area for an extra particle. The sum
these ‘‘voids’’ determines the chemical potential by the t
particle method@1#. Since the particles are indistinguishab
the sum of all the uncovered volumes, plus volumes cove
by the exclusion circle ofat mostone particle, define the
accessible phase-space volume of a particle.

In light of these, we can write the partition functionQ of
the hard-sphere system as follows:

Q5S 2pm

bh2 D 3N/2 ~VP!N

N!
, ~1!

FIG. 1. A schematic two-dimensional picture of the accessi
phase-space volume. See text for explanation.
©2002 The American Physical Society10-1
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whereN is the number of particles,V is the volume,m is the
mass,h is Planck’s constant, andb51/kT, whereT is the
temperature andk is Boltzmann’s constant. The number,
<P<1 defines the ratio of the volume accessible to a p
ticle. Then the excess free energy,Aex, ~relative to the perfect
gas at the same temperature and density! per particle is

bAex

N
5

bA

N
2

bApg

N
52 ln Qpg

1/N2 ln P1 ln Qpg
1/N. ~2!

At this stage, it is important to connectP to the idea
depicted in Fig. 1. There are two ways to determineP from a
single configuration snapshot. We can take the arithmeti
the geometric mean of thePi-s representing the volume be
longing to particlei. ~In the case of a ‘‘void,’’ the volume can
be associated with the closest center.!

Pa5
1

N (
i 51

N

Pi or Pg5)
i 51

N

Pi
1/N . ~3!

This gives for the excess entropy

Sex

Nk
5 ln^Pa& or

Sex

Nk
5^ ln Pg&, ~4!

where the average is taken over the snapshots.
The actual calculations were carried out by connectin

grid-generating routine to a standard Monte Carlo progra
The routine generatesn23n23n2 points in the simulation
cell. To make it economic, each particle position is identifi
in a system ofn3n3n small cubic cells. This means tha
only particles of the closest 27 small cubic cells are chec
first. If they are all empty, then comes the following layer
cells, etc. The relative number of found grid points defin
the volume ratio,P.

In Fig. 2, we show the results for hard spheres. We p
formed the~3000 trial moves for each particle! calculations
for two system sizes:N5108 and 500. Since the number
grids were identical (n57), the smaller system size pro
vided more accurate results for dense systems. We check

FIG. 2. Excess entropy per particle for the hard-sphere fluid
for two points of the hard-sphere face-centered-cubic~fcc! crystal
in terms of the number densityr. Diamonds on the solid line
Carnahan-Starling values@10#; diamonds on the dotted line: fc
values of@11#; squares:2^ ln Pg&; dots:2 ln^Pa&.
02611
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by comparing their chemical potentials. Thus, we pres
only the small-system values up to the phase-transition d
sity of the fluid phase as determined by Hoover and Ree@9#,
and two points from the face-centered-cubic crystal. T
Carnahan-Starling equation@10# were used for the former
and the results of Frenkel and Ladd@11# were used for the
latter case as references. For low densities, the geomet
mean is closer to the exact value and, in both cases,
method shows more disorder. For higher densities, the a
metical mean is better. Its relative error beyondr50.5 is less
than 12%.~The hard-sphere diameters is set to 1, andr
[N/V.! In the solid phase also, the arithmetic mean is be
and the relative error is only 5%.

It might be useful to make a few remarks about the
sence of this method beyond the obvious geometrical pict
To determine the partition function, one has to perform
multi-dimensional integral for the whole phase spa
Z(N,V,T)5*dr1*dr2¯*drN exp@2bF(rN)#. In our
method, only the last integration is carried out explicitly.
principle, we could pursue this approach further by evalu
ing the integral for the next particle, but the demand of t
calculation, even for this second member of the expansion
substantial. The approximation exploits that the values of
other position variables are good representations of equ
rium configurations. Then, why cannot the results be clo
to the exact values? The most obvious answer for this qu
tion can be given in the case of dilute hard spheres. Ther
a finite and trivially calculable probability of particle colli
sions when the trajectories of reflecting particles are v
close to their incident trajectories. In these cases, the we
of the relevant, close-to-the-core volume elements~grid
points! should be higher than that of other, more dista
points of the system. This occurrence is taken into accoun
the integration and can also be understood from the Mo
Carlo procedure. The random motion tried in the direction
exclusion is prohibited, which gives a larger probability
particles staying together. The manifestation of it is a pea
the beginning of the pair-correlation function.~See Fig. 3.!
This is the reason why the correlation function expans

d
FIG. 3. Pair-correlation functions for a dilute state point of t

hard-sphere fluid (r50.2), and the hard-sphere face-centered cu
crystal (r51.1). Solid lines: functions measured in the syste
dotted lines: functions measured between possible centers~grid
points! and the rest of the particles.
0-2
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TABLE I. Excess free energy per particle of the Lennard-Jones liquid for different reduced temper
and reduced densities. The top number was calculated using the polynomials of@13#. The middle number is
our result with thesef

2 value shown below. Thesef
2 values were varied by 0.01 and only the best fits a

shown.

kT/«
rs3 0.75 0.90 1.00 1.15 1.25

0.84 23.374 22.857 22.529 22.056 21.751
23.368 22.878 22.546 22.065 21.773

sef
2 1.04 0.96 0.92 0.88 0.86

0.80 22.863 22.561 22.126 21.845
22.862 22.552 22.061 21.865

sef
2 0.97 0.93 0.89 0.86

0.75 22.554 22.163 21.911
22.545 22.124 21.895

sef
2 0.94 0.89 0.87

0.70 22.504 22.154 21.927
22.526 22.121 21.950

sef
2 0.95 0.90 0.88
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technique is very good for low densities@3#. The smallest
imperfection of ergodicity of our method can be seen in
crystalline phase.~See Fig. 3.!

III. SOFT-CORE SYSTEMS

In the case of soft-core particles, the situation is differe
First, there is no exclusive hard core. Second, each poin
the accessible phase space has different configuration en
thus, different weight in the configuration integr
Z(N,V,T). The free energy per particle for this system c
be written as follows:

bAex

N
52 ln

Z~N,V,T!1/N

V

52 ln E
V
dq d~u2w!exp~2bw!

52 lnE
2`

`

du w~u!exp~2bu!, ~5!

where we used dimensionless reduced positions,q[rV21/3,
and configuration energy per particlew[F(qN)/N and u
[U/N. In Eq. ~5!, we transformed the integral by positio
into an integral by energy. The functionw(u) means the
relative accessible volume in terms of its energy.

Clearly, we do not want to calculate the energy in the g
points. This would be a formidable task. Instead, we crea
histogram of the energy distribution during the course of
simulation. This functionf (u) is normalized and can be writ
ten as

f ~u!5w~u!exp~2bu!/Qu , ~6!

whereQu is the partition function, as given by the last int
gral in Eq.~5!. Defining an effective exclusion diameter, w
02611
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can determine the arithmeticP during the same simulation
similarly to the hard-sphere case. Then we can make
following transformations:

(
u

w~u!/Qu5(
u

f ~u!exp~bu!, ~7!

and

w~u!Y (
u

w~u!5 f ~u!exp~bu!QiY (
u

w~u!. ~8!

However,(w(u)5P. This way, knowingf (u) andP we can
determine the partition functionQu .

The role of the effective hard core is to exclude regio
which, because of their very high energy, give no contrib
tion to the partition function. In the perturbation theory
simple liquids, there are methods to define effective diame
for a soft-sphere particle@10#. These methods use the har
sphere fluid as a reference system and estimate the free
ergy of the soft-core system. In this paper, we will not d
cuss the possible strategies of effective hard-c
determinations. It is certain, however, that, in this case, th
approaches are not the optimal ones because our hard
results are not exact. So, it seems better to choose a diam
which can correct the inherent errors present in the ha
sphere results. The use of the whole approach relies on fi
ing an easy way to apply procedure for this purpose. A
tailed study of this will be given in our next paper@12#.

We performed several pilot calculations to see the role
the value of the effective hard core. It turned out that in t
dense liquid region in order to obtain good results, this qu
tity has to be varied with the temperature and its typi
value is between the first nonzero value of the pa
correlation function and its first peak. Clearly, the higher t
temperature, the smaller the diameter. The density dep
0-3
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dence is much smaller. In Table I, using the equations
Johnson, Zollweg, and Gubbins@13#, we compare our result
to theirs for stable liquid state points. We used several ef
tive diameters at each state point. The squares of the d
eters were varied by 0.01. We show only the results with
best match. The data were obtained from simulations of
particles with 4000 trial moves per particle and then57 grid
system. Although it is the grid-counting part of the co
which consumes most of the computing time, the increa
demand is still moderate, even on a PC.

IV. CONCLUSIONS

The soft-core calculations are semiempirical, still, t
method is extremely useful. There are several classical
tential sets used in atomistic computer simulations. Sinc
is the shape of the repulsive wing, which is important, it
possible to generate a well-tested set of diameters depen
on the type of interactions, temperature and, if necess
density. The occurrence of different sizes, nonadditivity a
ys
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molecular constraints need special care, but every one
them is straightforward to handle. What should be kept
mind is that the volume determination have to sum up o
volume elements that are accessible to the atom or molec
If this can be done correctly, the role of the phase-sp
volume is nothing more than to normalize the partition fun
tion. The important part is included in the energetic deta
which, as a result of structural changes~for instance, differ-
ent orientations for polar molecules!, provide different ener-
gies to the partition function.

The method is very promising in the simulation of clas
cal solids and complicated models as biopolymers wh
there is no cheap and simple way for the estimation of c
formational free-energy differences. We are going to d
with these questions in forthcoming papers.
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