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Direct estimation of the partition function from computer simulation
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We propose an approximate method for directly estimating the partition function of classical, many-body
model systems. The accessible part of the phase space is determined from a single simulation. We introduce the
method for the hard-sphere fluid and solid. The best performance is found in the dense fluid regime, close to
freezing density and in the solid crystal. Defining hard-core effective diameters, the method can be applied to
systems with soft-core interactions. We present results of exploratory calculations for the Lennard-Jones liquid.
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[. INTRODUCTION hard spheres. Creating an easy-to-use algorithm, we present
results for hard-sphere fluids and solids. In the second part,
The most challenging task of computer simulations is towe adapt the method for a soft-core system represented by
determine the partition function of many-body model sys-the Lennard-Jones liquid.
tems. The patrtition function or related thermodynamic poten-
tial functions such as free energy or entropy are not phase
variables but functionals of the calculation. In general, their Il. THE GEOMETRIC PICTURE
accurate estimation requires simulation over, at least, two
state points. One is the reference state, most often the ideﬁ(i;1
gas or the low-temperature harmonic crystal, with known

The idea is depicted in Fig. 1 in two dimension. We have

rd spheres represented by white circles. Each circle is sur-
. . ) rounded by a dark circle representing a space inaccessible for
thermodynamic potential functions. The entropy or free ey, conters of other particles. Let the present configuration be

ergy of the other state is determined by connecting it via 8, gnanshot of an equilibrium arrangement. If we keep all the
reversible path to the reference state. A fairly recent accou%gV

¢ f the effici hod be found in the book articles fixed, the volume accessible to particle 1 is the
of most of the efficient methods can be found in the book o ite area around this number because it is bordered by the
Frenkel and Smif1].

. I . _ ..._exclusion circles of other particles. In the case of particle 2,
In special cases, it is possible to obtain these quantitieg, 5 yqition to the white area, there is also a dark area which
from a single simulation. A direct and systematic way is to

. ; ; is covered only by its own exclusion circle. The number 3
expand the entropy in terms of the correlation functifils marks a “void,” an area for an extra particle. The sum of

Unfortunately, the method is applicable only to dilute SYS"these “voids” determines the chemical potential by the test

tems because it is practically impossible to calculate highebarticle method1]. Since the particles are indistinguishable,

thgn 'Fhree-particle correlation _functioﬁS]. Another po_ssi- the sum of all the uncovered volumes, plus volumes covered
bility is the so-called test particle method, which estimate the exclusion circle oft mostone particle, define the
the excess chemical potential. The technique is based on tl?j‘ cessible phase-space volume of a particle '

Qerivati_on of W@don_{4]. Aseverg Iim.itation of this approach In light of these, we can write the partition functi@nhof
is that its practical |m_plementat|0n involves a random inserih o hard-sphere system as follows:
tion of an extra particle in the system. Clearly, for dense
systems or for particles with a complicated shape, the suc-
cess rate of insertion attempts goes to zero and the excess 27rm| 32 (v pyN
chemical potential becomes immeasurdlid]. Q=<—2) —
In the following, we present a method which is closely Ah N!
related to the “free-volume” idea of Hoover, Hoover, and
Hanson[6] introduced for hard disks. Using elementary ge-
ometry for a two-dimensional system of hard disks, it was
straightforward to determine the average volume available to
a single particle analyticallj6]. There are several other pa-
pers in the literature applying related concepts of geometric
measures to determine partition functions for different pur-
poseq7,8]. We want to show that the idea of free volume is,
in fact, only a special, hard-core version of a more general
treatment which can be applied to soft-core model systems as
well. This makes the approach very attractive, despite the
fact that being an approximation, its usage possesses a semi-
empirical character.
The organization of the paper is as follows. First, we FIG. 1. A schematic two-dimensional picture of the accessible
present the geometrical view of the free-volume concept fophase-space volume. See text for explanation.

@

1063-651X/2002/6&)/02611@4)/$20.00 65026110-1 ©2002 The American Physical Society



ANDRAS BARANYAI PHYSICAL REVIEW E 65 026110

7 6
6 7 5
5 Y * g(r) %
4
Z4
5 p=1.1
@3 3

I
IRERDE & N e
o 1 /7\/ VN

p 0
0 1 3

FIG. 2. Excess entropy per particle for the hard-sphere fluid and
for two points of the hard-sphere face-centered-cufaic) crystal FIG. 3. Pair-correlation functions for a dilute state point of the
in terms of the number density. Diamonds on the solid line: hard-sphere fluidg=0.2), and the hard-sphere face-centered cubic
Carnahan-Starling valudg0]; diamonds on the dotted line: fcc crystal (p=1.1). Solid lines: functions measured in the system;
values of[11]; squares=—(In Pg); dots: —In(P,). dotted lines: functions measured between possible ceifggis
points and the rest of the particles.
whereN is the number of particled/ is the volumemis the
mass,h is Planck’s constant, an@=1/kT, whereT is the by comparing their chemical potentials. Thus, we present
temperature andt is Boltzmann’s constant. The number, 0 only the small-system values up to the phase-transition den-
<P=1 defines the ratio of the volume accessible to a parsity of the fluid phase as determined by Hoover and PRge
ticle. Then the excess free energy, (relative to the perfect and two points from the face-centered-cubic crystal. The
gas at the same temperature and depgigr particle is Carnahan-Starling equatidi0] were used for the former,
and the results of Frenkel and Lafitil] were used for the
BA% _ BA BhApg _ latter case as references. For low densities, the geometrical
N N N mean is closer to the exact value and, in both cases, our
method shows more disorder. For higher densities, the arith-
At this stage, it is important to conneét to the idea metical mean is better. Its relative error beygnd0.5 is less
depicted in Fig. 1. There are two ways to deternfifeom a  than 12%.(The hard-sphere diameter is set to 1, andp
single configuration snapshot. We can take the arithmetic o&N/V.) In the solid phase also, the arithmetic mean is better
the geometric mean of thie;-s representing the volume be- and the relative error is only 5%.

—InQiy'=INP+In QY. (2

longing to particlé. (In the case of a “void,” the volume can |t might be useful to make a few remarks about the es-
be associated with the closest center. sence of this method beyond the obvious geometrical picture.
L N To determine the partition function, one has to perform a

_ _ 1N multi-dimensional integral for the whole phase space:

a_NE Pior Pg_iljl P ©) Z(N,V,T)=[dr,fdr,--fdryexd—B®rN)]. In  our

method, only the last integration is carried out explicitly. In

This gives for the excess entropy principle, we could pursue this approach further by evaluat-
ing the integral for the next particle, but the demand of the
X—In(P o np 4  Calculation, even for this second member of the expansion, is
Nk a) OF Nk =(InPy), ) substantial. The approximation exploits that the values of the
other position variables are good representations of equilib-
where the average is taken over the snapshots. rium configurations. Then, why cannot the results be closer

The actual calculations were carried out by connecting ao the exact values? The most obvious answer for this ques-
grid-generating routine to a standard Monte Carlo programtion can be given in the case of dilute hard spheres. There is
The routine generates®xn?xn? points in the simulation a finite and trivially calculable probability of particle colli-
cell. To make it economic, each particle position is identifiedsions when the trajectories of reflecting particles are very
in a system ofmxXnxn small cubic cells. This means that close to their incident trajectories. In these cases, the weight
only particles of the closest 27 small cubic cells are checkedf the relevant, close-to-the-core volume elemefgsid
first. If they are all empty, then comes the following layer of pointg should be higher than that of other, more distant
cells, etc. The relative number of found grid points definespoints of the system. This occurrence is taken into account in
the volume ratioP. the integration and can also be understood from the Monte

In Fig. 2, we show the results for hard spheres. We perCarlo procedure. The random motion tried in the direction of
formed the(3000 trial moves for each partiglealculations  exclusion is prohibited, which gives a larger probability of
for two system sizedN=108 and 500. Since the number of particles staying together. The manifestation of it is a peak at
grids were identical if=7), the smaller system size pro- the beginning of the pair-correlation functiofSee Fig. 3.
vided more accurate results for dense systems. We checkedTihis is the reason why the correlation function expansion
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TABLE |. Excess free energy per particle of the Lennard-Jones liquid for different reduced temperatures
and reduced densities. The top number was calculated using the polynoniia8§. dfhe middle number is
our result with theo?; value shown below. The'? values were varied by 0.01 and only the best fits are

shown.
kT/e

pa 0.75 0.90 1.00 1.15 1.25
0.84 —-3.374 —2.857 —2.529 —2.056 -1.751
—3.368 -2.878 —2.546 —2.065 -1.773
o 1.04 0.96 0.92 0.88 0.86
0.80 —2.863 —2.561 -2.126 -1.845
—2.862 —2.552 —2.061 —1.865

o’ 0.97 0.93 0.89 0.86
0.75 —2.554 -2.163 -1.911
—2.545 -2.124 -1.895

o 0.94 0.89 0.87
0.70 —2.504 —-2.154 -1.927
—2.526 -2.121 —-1.950

ol 0.95 0.90 0.88

technique is very good for low densiti¢8]. The smallest can determine the arithmetke during the same simulation
imperfection of ergodicity of our method can be seen in thesimilarly to the hard-sphere case. Then we can make the

crystalline phaseSee Fig. 3. following transformations:
Ill. SOFT-CORE SYSTEMS
> w(w/Qu=2 f(u)exp(u), 7
In the case of soft-core particles, the situation is different. ! Y
First, there is no exclusive hard core. Second, each point in
the accessible phase space has different configuration energd
thus, different weight in the configuration integral
Z(N,V,T). The free energy per particle for this system can
be written as follows: w(u) % w(u)=f(u)expBu)Q; % w(u). (8
ex 1N
’8;: = _|nM However,2w(u)=P. This way, knowingf (u) andP we can

determine the partition functio®,, .
The role of the effective hard core is to exclude regions
=—In j dg s(u—¢p)exp(— Be) which, because of their very high energy, give no contribu-
v tion to the partition function. In the perturbation theory of
o simple liquids, there are methods to define effective diameter
= —Inf du w(u)exp — Bu), (5)  for a soft-sphere particlgl0]. These methods use the hard-
m sphere fluid as a reference system and estimate the free en-
ergy of the soft-core system. In this paper, we will not dis-
where we used dimensionless reduced positigrstV "%, cuss the possible strategies of effective hard-core
and configuration energy per particle=®(q")/N andu  determinations. It is certain, however, that, in this case, these
=U/N. In Eq. (5), we transformed the integral by position approaches are not the optimal ones because our hard-core
into an integral by energy. The functiom(u) means the results are not exact. So, it seems better to choose a diameter
relative accessible volume in terms of its energy. which can correct the inherent errors present in the hard-
Clearly, we do not want to calculate the energy in the gridsphere results. The use of the whole approach relies on find-
points. This would be a formidable task. Instead, we create gg an easy way to apply procedure for this purpose. A de-
histogram of the energy distribution during the course of theailed study of this will be given in our next papgt2].

simulation. This functiorf(u) is normalized and can be writ-  We performed several pilot calculations to see the role of
ten as the value of the effective hard core. It turned out that in the
dense liquid region in order to obtain good results, this quan-

f(u)=w(u)exp(—Bu)/Qy, (6)  tity has to be varied with the temperature and its typical

value is between the first nonzero value of the pair-
whereQ,, is the partition function, as given by the last inte- correlation function and its first peak. Clearly, the higher the
gral in Eq.(5). Defining an effective exclusion diameter, we temperature, the smaller the diameter. The density depen-
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dence is much smaller. In Table I, using the equations ofnolecular constraints need special care, but every one of
Johnson, Zollweg, and Gubbih3], we compare our results them is straightforward to handle. What should be kept in
to theirs for stable liquid state points. We used several effecmind is that the volume determination have to sum up only
tive diameters at each state point. The squares of the dianvolume elements that are accessible to the atom or molecule.
eters were varied by 0.01. We show only the results with thef this can be done correctly, the role of the phase-space
best match. The data were obtained from simulations of 108olume is nothing more than to normalize the partition func-
particles with 4000 trial moves per particle and the7 grid  tion. The important part is included in the energetic details
system. Although it is the grid-counting part of the codewhich, as a result of structural changésr instance, differ-
which consumes most of the computing time, the increasednt orientations for polar moleculegrovide different ener-

demand is still moderate, even on a PC. gies to the partition function.
The method is very promising in the simulation of classi-
IV. CONCLUSIONS cal solids and complicated models as biopolymers where

) ) . ) there is no cheap and simple way for the estimation of con-

The soft-core calculations are semiempirical, still, thefoymational free-energy differences. We are going to deal
method is extremely useful. There are several classical pQjth these questions in forthcoming papers.
tential sets used in atomistic computer simulations. Since it
is the shape of the repulsive wing, which is important, it is ACKNOWLEDGMENT
possible to generate a well-tested set of diameters depending
on the type of interactions, temperature and, if necessary, The author gratefully acknowledges the support of OTKA
density. The occurrence of different sizes, nonadditivity andSrant No. T032481.
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